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Abstract

Continuous exponential families are applied to linking forms via a single-group design. In this

application, a distribution from the continuous bivariate exponential family is used that has

selected moments that match those of the bivariate distribution of scores on the forms to be

linked. The selected continuous bivariate distribution then yields continuous univariate marginal

distributions for the two forms. These marginal distributions then provide distribution functions

and quantile functions that may be employed in equating. Normal approximations are obtained

for the sample distributions of the conversion functions.
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Application of continuous exponential families to linking has been considered for

equivalent-groups designs (Haberman, 2008). In such an application, it suffices to consider

univariate continuous exponential families. For single-group designs for linking forms, bivariate

continuous exponential families may be used. In this approach, the member of the bivariate

continuous exponential family used to link two forms is chosen to share selected moments with

the joint distribution of the scores on two forms to be linked. Once the bivariate continuous

distribution is selected, one then has a continuous marginal distribution that corresponds to each

of the forms under study. These marginal distributions may then be used to construct conversion

functions that link the forms. This procedure is readily implemented. For random sampling, the

estimated conversion functions are easily computed, and, for each point at which a conversion is

desired, the estimated conversion function has an approximate normal distribution with mean 0

and an asymptotic covariance matrix that is readily estimated. Results in this report are related

to recent work on an alternative to kernel equating (Wang, 2008), although the models in this

report are more general and numerical methods are somewhat different.

Section 1 describes the proposed continuous exponential families for bivariate distributions

and defines conversions based on these families are defined. Different models are compared by use

of an information criterion (Haberman, 2008). Section 2 develops estimates of parameters and

conversion functions and considers the large-sample properties of estimated conversions in terms

of consistency and asymptotic normality. Estimated asymptotic standard deviations are provided

for the estimated conversions. Section 3 presents a Newton-Raphson algorithm for computation of

parameter estimates and discussed numerical quadrature issues.

Section 4 illustrates results by use of a published example to which kernel equating has

previously been applied (von Davier, Holland, & Thayer, 2004).

Conclusions and possible further developments are examined in section 5.

1 Bivariate Continuous Exponential Families

In the equating problem considered, a sample of n examinees receives two different forms.

For Form j, where j is 1 or 2, possible scores are in the closed interval with finite lower bound

cj and finite upper bound dj > cj . For examinee i, 1 ≤ i ≤ n, the score on Form j is Xij . It is

assumed that the pairs (Xi1, Xi2), 1 ≤ i ≤ n, are mutually independent and identically distributed

random vectors such that Xij has distribution function Fj . No requirement is imposed that the
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scores be integers or rational numbers. Nonetheless, in typical applications, Fj is not continuous,

so that equating forms based on observed scores and some equipercentile approach normally

involves some approximation of the distribution function Fj by a continuous distribution function

Gj , which is strictly increasing on some open interval B(j) that contains both cj and dj . For each

positive real p < 1, there exists a unique continuous and increasing quantile function Rj such

that Gj(Rj(p)) = p. The linking function e12 for conversion of a score on Form 1 to a score on

Form 2 is then e12(x) = R2(G1(x)) for x in B(1), while the linking function e21 for conversion of

a score on Form 2 to a score on Form 1 is e21(x) = R1(G2(x)) for x in B(2). Both e12 and e21

are strictly increasing and continuous on their respective ranges, and e12 and e21 are inverses, so

that e12(e21(x)) = x for x in B(2) and e21(e12(x)) = x for x in B1 (Haberman, 2008). If g1 is

continuous at x in B(1) and g2 is continuous at e12(x), then application of standard results from

calculus shows that e12 has derivative e′12(x) = g1(x)/g2(e12(x)) at x. Similarly, if g2 is continuous

at x in B(2) and g1 is continuous at e21(x), then e21 has derivative e′21(x) = g2(x)/g1(e21(x)) at x.

One method to obtain a suitable pair of distribution functions G1 and G2 is to approximate

the joint distribution of Xi = (Xi1, Xi2) by use of a bivariate continuous exponential family. Let

B(j) be bounded for 1 ≤ j ≤ 2. Let ukj be a polynomial of degree k on the interval B(j) for k ≥ 0

and 1 ≤ j ≤ 2. For a pair k = (k(1), k(2)) of nonnegative integers, let uk be the polynomial on the

plane such that uk(x) = uk(1)1(x1)uk(2)2(x2) for real pairs x = (x1, x2). Let µk be the expectation

of uk(Xi), so that µk is a linear combination of the bivariate moments E(Xj(1)
i1 X

j(2)
i2 ) of Xi for

integers j(1) ≤ k(1) and j(2) ≤ k(2)). Consider a nonempty set K of r pairs of nonnegative

integers k = (k(1), k(2)) such that k(1) or k(2) is positive. Let µK be the K-array of µk, k in

K, and let uK(x) be the K-array of uk(x), k in K. If yK is a real K-array of yk, k in K, and

zK is a real K-array of zk, k in K, then let y′KzK be the summation
∑

k∈K ykzk. Assume that,

for any real K-array yK , the variance of y′KuK(Xi) is 0 only if yk = 0 for each k in K. Let

B = B(1)×B(2) be the interval in the plane that consists of pairs (b(1), b(2)) such that b(1) is in

B(1) and b(2) is in B(2). Then a unique continuous bivariate distribution with positive density on

B has the exponential family density

gK(x) = γK(θK) exp[θ′KuK(x)],

x in B, for a unique K-array θK with elements θkK , k in K, and a unique positive real γK(θK)
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such that ∫
B

uk(x)gK(x)dx = µk

for k in K and ∫
B

gK(x)dx = 1

(Gilula & Haberman, 2000). A random vector YK = (Y1K , Y2K) then exists such that YjK is in

B(j) for 1 ≤ j ≤ 2 and YK has density gK . The moment equalities E(uk(YK)) = E(uk(Xi)) hold

for k in K, so that YK has a distribution close to that of X in the sense that the expected log

penalty function IK = E(− log gK(X)) is the smallest expected log penalty function E(− log g(X))

for all probability densities g on B such that

g(x) = γK(θK∗) exp[θ′K∗uK(x)]

for some real K-array θK∗, and E(− log g(X)) = IK only if θK∗ = θK .

The moment equations expressed in terms of uk can be interpreted in terms of conventional

moments if the set K satisfies the hierarchy rule that (k(1), k(2)) is in K whenever (h(1), h(2))

is in K, k(1) ≤ h(1), k(2) ≤ h(2), k(1) and k(2) are nonnegative integers, and k(1) or k(2)

is positive. The equations E(uk(YK)) = E(uk(X)) for k in K then hold if, and only if,

E(Y k(1)
1K Y

k(2)
2K ) = E(Xk(1)

i1 X
k(2)
i2 ) for all k in K.

For 1 ≤ j ≤ 2, the distribution function GjK of YjK is strictly increasing and continuously

differentiable on B(j). If B(j, y), y in B(j), consists of all pairs (y1, y2) such that y1 is in B(1), y2

is in B(2), and yj ≤ y, then

GjK(y) =
∫

B(j,y)
g(x)dx.

The inverse RjK defined by Gjk(RjK(p)) for 0 < p < 1 is also continuously differentiable and

strictly increasing, so that the conversion functions e12K = R2K(G1K) and e21K = R1K(G2K) are

also continuously differentiable and strictly increasing.

As in the case of univariate exponential families (Haberman, 2008), numerical work is

simplified if computations employ the Legendre polynomials Pk for k ≥ 0 (Abramowitz & Stegun,

1965, chaps. 8, 22). These polynomials are determined by the equations P0(x) = 1, P1(x) = x,

and

Pk+1(x) = (k + 1)−1[(2k + 1)xPk(x)− kPk−1(x)],
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k ≥ 1. If inf(B(j)) is the infimum of B(j) and sup(B(j)) is the supremum of B(j), then it is

relatively efficient for numerical work to let βj = [inf(B(j)) + sup(B(j))]/2 be the midpoint of

B(j), ηj = [sup(B(j))− inf(B(j))]/2 be half the range of B(j), and

ukj(x) = Pk((x− βj)/ηj).

In applications considered in this report, for integers r(j) > 1, 1 ≤ j ≤ 2, the set K

consists of the r(1) + r(2) + 1 elements (k(1), 0), 1 ≤ k(1) ≤ r(1), (0, k(2)), 1 ≤ k(2) ≤ r(2), and

(1, 1), so that the hierarchy principle holds, YjK and Xij have the same r(j) initial moments for

1 ≤ j ≤ 2 and Y1K and Y2K have the same correlation as Xi1 and Xi2. Thus YjK and Xij have

the same mean and variance for each j. If r(j) > 2, then YjK and Xij have the same skewness

coefficient. If r(j) > 3, then YjK and Xij have the same kurtosis coefficient. In the case of

r(1) = r(2) = 2 and use of Legendre polynomials, if θk is negative for k equal to (2, 0) or (0, 2)

and θ2
(1,1) is less than 36θ2

(2,0)θ
2
(0,2), then YK corresponds to a bivariate normal random variable

Z = (Z1, Z2). The distribution of YK is the same as the conditional distribution of Z conditional

on Zj being in B(j) for 1 ≤ j ≤ 2. Comparison of the density formula for the bivariate normal

with the density formula for the corresponding continuous exponential family shows that the

unconditional variance of Z1 satisfies

σ2(Z1) = − η2
1

6θ(2,0) − θ2
(1,1)/(6θ(0,2))

,

the unconditional variance of Z2 is

σ2(Z2) = − η2
2

6θ(0,2) − θ2
(1,1)/(6θ(2,0))

,

the unconditional correlation of Z1 and Z2 is

ρ(Z1, Z2) = θ(1,1)/[6(θ(2,0)θ(0,2))
1/2],

the unconditional mean of Z1 is

E(Z1) = β1 −
η1[θ(1,0) − θ(0,1)θ(1,1)/(6θ(0,2))]

6θ(2,0) − θ2
(1,1)/(6θ(0,2))

,

and the unconditional mean of Z2 is

E(Z2) = β2 −
η2[θ(0,1) − θ(1,0)θ(1,1)/(6θ(2,0))]

6θ(0,2) − θ2
(1,1)/(6θ(2,0))

.
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One alternative choice of K (Wang, 2008) has K contain all pairs (k(1), k(2)) of

nonnegative integers such that k(1) or k(2) is positive, k(1) ≤ r(1), and k(2) ≤ r(2). If r(1) > 1

and r(2) > 2, then E(Y k(1)
1K Y

k(2)
2K ) = E(Xk(1)

i1 X
k(2)
i2 ) for 1 ≤ k(1) ≤ r(1) and 1 ≤ k(2) ≤ r(2).

2 Estimation of Parameters

The parameter θK , the information criterion IK , the distribution functions GjK , and the

conversion functions e12K and e21K are readily estimated (Gilula & Haberman, 2000; Haberman,

2008). For k in K, let mk be the sample mean n−1
∑n

i=1 uk(Xi), and let mK be the K-array with

elements mk, k in K . If the covariance matrix of mK is positive definite, then θK is estimated

by the unique K-array θ̂K such that∫
B

uK(x)ĝK(x)dx = mK ,

∫
B

ĝK(x)dx = 1,

and

ĝK(x) = γ(θ̂K) exp[θ̂
′
KuK(x)]

for x in B.

As the sample size n approaches ∞, θ̂K converges to θK with probability 1, and

n1/2(θ̂K − θK) converges in distribution to a multivariate normal random variable with 0 mean

and with covariance matrix AK = C−1
K DKC−1

K (Gilula & Haberman, 2000). Here DK is the

covariance matrix of uK(X) and CK is the covariance matrix of the K-array uK(YK). Thus

CK =
∫

B
[uK(x)− µK ][uK(x)− µK ]′gK(x)dx.

The estimate of CK is

ĈK =
∫

B
[uK(x)−mK ][uK(x)−mK ]′ĝK(x)dx.

The estimate of DK is

D̂K = (n− 1)−1
n∑

i=1

[uK(Xi)−mK ][uK(Xi)−mK ]′.

Thus AK has estimate

ÂK = Ĉ−1
K D̂KĈ−1

K .
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For any nonzero constant K-array zK , the estimated asymptotic standard deviation (EASD) of

z′K θ̂K is

σ̂(z′K θ̂K) = n−1/2(z′KÂKzK)1/2,

so that (z′K θ̂K −z′KθK)/σ̂(z′K θ̂K) converges in distribution to a standard normal random variable.

The minimum expected penalty IK may be estimated by

ÎK = − log γK(θ̂K)− θ̂
′
KmK .

As the sample size n increases, ÎK converges to IK with probability 1 and n1/2(ÎK − IK) converges

in distribution to a normal random variable with mean 0 and variance

σ2(− log gK(X)) = µ′KAKµK .

The EASD of ÎK is then

σ̂(ÎK) = n−1/2(m′
KÂKmK)1/2.

To verify this claim, let HK be the function defined by

HK(θ) = −n−1
n∑

i=1

log gK(θ),

and let HK0 = KK(θK). Apply the central limit theorem to HK0 to show that the scaled

difference n1/2(HK0 − IK) converges in distribution to a normal random variable with mean 0 and

variance σ2(− log gK(X)). Differentiation and Taylor’s theorem show that the difference

2(HK0 − ÎK) = (θ̂K − θK)′C∗
K(θ̂K − θK)

for C∗
K the covariance matrix of the K-array uK(Y∗

K) for some random vector Y∗
K with density

γK(θ∗K) exp[(θ∗K)′uK(x)] for some θ∗K on the line segment between θK and θ̂K . It follows that

n1/2(HK0 − ÎK) converges in probability to 0 and n1/2(ÎK − IK) converges in distribution as

claimed.

For 1 ≤ j ≤ 2, the distribution function GjK has estimate ĜjK defined by

ĜjK(y) =
∫

B(j,y)
ĝK(x)dx

for y in B(j), and the quantile function RjK has estimate R̂jK defined by

ĜjK(R̂jK(p)) = p
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for 0 < p < 1. For a continuously differentiable function fKjy on the set of K arrays,

Ĝjk(y) = fKjy(θ̂K), and fKjy has gradient

TjK(y) =
∫

B(j,y)
[uK(x)− µK ]gK(x)dx

at θK . The delta method (Rao, 1973, p. 388) and the fact that ĜjK is a continuous

distribution function may be employed to demonstrate that, as the sample size n approaches

∞, ĜjK(y) converges to GjK(y) with probability 1 for y in B(j), so that |ĜjK − GjK |, the

supremum of |ĜjK(y) − GjK(y)| for y in B(j), converges to 0 with probability 1. In addition,

[ĜKj(y)−GjK(y)]/σ(ĜjK(y)) converges in distribution to a normal random variable with mean 0

and variance 1 if

σ(ĜjK(y)) = n−1/2{[TjK(y)]′AKTjK(y)}1/2.

Similarly, R̂jK(p) converges to RjK(p) with probability 1, and [R̂jK(p)−RjK(p)]/σ(R̂jK(p))

converges in distribution to a normal random variable with mean 0 and variance 1 if

σ(R̂jK(p)) = [gjK(RjK(p))]−1σ(ĜjK(RjK(p)))

and gjK(y) is the marginal density corresponding to GjK . Thus g1K(y) is the integral of

gK((y, x2)) over x2 in B(2), and g2K(y) is the integral of gK((x1, y)) over x1 in B(1). Estimated

asymptotic standard deviations may be derived by use of obvious substitutions of estimated

parameters for actual parameters. Thus

σ̂(ĜjK(y)) = n−1/2{[T̂jK(y)]′ÂKT̂jK(y)}1/2,

where

T̂jK(y) =
∫

B(j,y)
[uK(x)−mK ]ĝK(x)dx,

σ̂(R̂jK(p)) = [ĝjK(R̂jK(p))]−1σ̂(ĜjK(R̂jK(p))),

and ĝjK(y) is the marginal density corresponding to ĜjK .

The estimate ê12K of the conversion function e12K(y) from Form 1 to Form 2 satisfies

ê12K(y) = R̂2K(Ĝ1K(y)) for y in B(1), and the corresponding estimate ê21K of e21K satisfies

ê21K(y) = R̂1K(Ĝ2K(y)) for y in B(2) As the sample size n become large, ê12K(y) converges with

probability 1 to e12K(y) for y in B(1), and ê21K(y) converges with probability 1 to e21K(y) for

7



y in B(2). In addition, [ê12K(y) − e12K(y)]/σ(ê12K(y)) converges in distribution to a standard

normal random variable if

σ(ê12(y)) = n−1/2{[T1K(y)−T2K(e12(y))]′AK [T1K(y)−T2K(e12(y))]}1/2,

In like manner, [ê21K(y) − e21K(y)]/σ(ê21K(y)) converges in distribution to a standard normal

random variable if

σ(ê21(y)) = n−1/2{[T2K(y)−T1K(e21(y))]′AK [T2K(y)−T1K(e21(y))]}1/2,

The EASD of ê12(y) is

σ̂(ê12(y)) = n−1/2{[T̂1K(y)− T̂2K(ê12(y))]′ÂK [T̂1K(y)− T̂2K(ê12(y))]}1/2,

The EASD of ê21(y) is

σ̂(ê21(y)) = n−1/2{[T̂2K(y)− T̂1K(ê21(y))]′ÂK [T̂2K(y)− T̂1K(ê21(y))]}1/2.

3 Computational Issues

Given a starting value θK0, the Newton-Raphson algorithm may be employed to compute

θ̂K . Computation of θ̂K corresponds to minimization of HK . At step t ≥ 0, a new approximation

θK(t+1) of θ̂K is found by the equation

θK(t+1) = θKt + C−1
Kt[mK − µKt].

Here

gKt(x) = γK(θKt) exp[θ′KtuK(x)],

x in B, γK(θKt) is defined so that ∫
B

gKt(x)dx = 1,

µKt =
∫

B
uK(x)gKt(x)dx,

mK − µKt is the gradient of HK at θKt, and

CKt =
∫

B
[uK(x)− µKt][uK(x)− µKt]

′gKt(x)dx

is the Hessian matrix of HK at θKt.
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The Newton-Raphson algorithm is also employed to evaluate quantile functions (Haberman,

1996, pp. 426–427). The algorithm considers solution of the equation

log[ĜjK(R̂jK(p))/p] = 0

for a given p in the interval (0, 1). Given an initial approximation Rjk0(p) to R̂jK(p) and the fact

that log(ĜjK) has derivative ĝjK/ĜjK , the Newton-Raphson algorithm produces approximations

RjKt(p) to R̂jK(p) such that

RjK(t+1)(p) = RjKt(p)− ĜjK(RjKt(p)) log[ĜjK(RjK(p))/p]/ĝjK(RjKt(p)).

The Legendre polynomials used in typical cases to define uK also form the basis for the

Gaussian quadrature used for evaluation of all integrals on B, B(1), and B(2) (Abramowitz

& Stegun, 1965, p. 887). In the case of ĜjK(y), the limits of integration of the numerator

related to Form j are from inf(B(j)) to y rather than from inf(B(j)) to sup(B(j)), so that the

scaled Legendre polynomials are modified accordingly for Gaussian quadrature. In this paper,

calculations use 20-point Gaussian quadrature for each dimension. The larger number of points

than used in previous work on equivalent groups (Haberman, 2008) reflects the numerical challenge

associated with form scores that are typically highly correlated.

The rectangle rule of integration has been employed in the literature for the case with

B(j) = (cj − 0.5, dj + 0.5) (Wang, 2008), with cj and dj integers, and with the integers from cj to

dj used as equally weighted quadrature points. Because the distance between quadrature points

is not small, this integration approach yields errors that are not negligible. For expectations

E(Y k(1)
1K Y

k(2)
2K ), approximation errors are of order (d1 − c1)−2 + (d2 − c2)−2, so that they can

be expected to be relatively minor for very long tests and somewhat more obvious for quite

short tests. Unfortunately, the proper conditions for use of Sheppard’s corrections (Kolassa &

McCullagh, 1990) do not apply, so that the most precise approach to evaluation of errors is

unavailable. It should be emphasized that, in practice, use of Legendre polynomials results in

both higher accuracy and less computation than does use of the rectangle rule.

4 Example

Table 8.2 of von Davier et al. (2004) provides an example of a single-group design with

cj = 0 and dj = 20 for 1 ≤ j ≤ 2. To illustrate results, let B(1) = B(2) = (−0.5, 20.5). The ukj
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are defined based on Legendre polynomials, and three sets K are considered. These sets are

K(2) = {(1, 0), (2, 0), (0, 1), (0, 2), (1, 1)},

K(3) = {(1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1)},

and

K(4) = {(1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1)}.

Results for parameters are summarized in Table 1. Results in terms of estimated expected log

penalties are summarized in Table 2. These results suggest that gains beyond the quadratic case

K(2) are quite small, although K(4) differs from K(3) more than K(3) differs from K(2).

Table 1
Model Parameters

K(2) K(3) K(4)
k Est. EASD Est. EASD Est. EASD
(1, 0) 0.902 0.118 1.012 0.140 1.056 0.153
(2, 0) -6.174 0.226 -6.226 0.231 -6.381 0.262
(3, 0) 0.174 0.124 0.234 0.147
(4, 0) -0.192 0.152
(0, 1) -0.463 0.126 -0.543 0.138 -0.477 0.179
(0, 2) -7.152 0.266 -7.141 0.265 -7.931 0.307
(0, 3) -0.117 0.117 -0.034 0.167
(0, 4) -0.836 0.164
(1, 1) 15.619 0.663 15.624 0.664 15.520 0.661

Note. EASD = estimated asymptotic standard deviation, est. = estimate.

Table 2
Estimated Expected Log Penalties

K Estimate EASD
K(2) 4.969 0.022
K(3) 4.968 0.022
K(4) 4.960 0.022

Note. EASD = estimated asymptotic standard deviation, est. = estimate.

Not surprisingly, the three choices of K lead to rather similar conversion functions.

Consider Table 3 for the case of conversion of Form 1 to Form 2. A bit more variability in results

10



exists for very high or very low values, although estimated asymptotic standard deviations are

more variable than are estimated conversions. Note that results are also similar to those for kernel

equating (von Davier et al., 2004, chap. 8) shown in Table 4. These results employ a log-linear

model for the joint distribution of the scores that is comparable to the model defined by K(3) for

a continuous exponential family. The log-linear fit preserves the initial three marginal moments

for each score distribution as well as the covariance of the two scores. As a consequence, the

marginal distributions produced by the kernel method have the same means and variances as do

the corresponding distributions of Xi1 and Xi2, but the kernel methods yields the distribution of

a continuous random variable for the first form with a skewness coefficient that is 0.987 times the

original skewness coefficient for Xi1 and a distribution of a continuous random variable for the

second form that with a skewness coefficient that is 0.983 times the original skewness coefficient

for Xi2.

5 Conclusions

As in the case of equivalent groups (Haberman, 2008), linking forms in a single-group

design by continuous exponential families appears similar in result to linking the same forms via

kernel equating. Continuous exponential families offer some possible gains. Unlike kernel equating,

bandwidths are not required, so that fewer specifications are required. In kernel equating,

log-linear smoothing and production of continuous distribution functions require distinct steps. In

the case of continuous exponential families, a model is fit that immediately results in continuous

distribution functions.

Although this gain is not apparent in the example, a possible gain from continuous

exponential families is that application to assessments with unevenly spaced scores or very large

numbers of possible scores is completely straightforward. Thus direct conversion from a raw score

on one form to an unrounded scale score on a second form involves no difficulties. In addition, in

tests with formula scoring, no need exists to round raw scores to integers during equating.

The single-group design provides the basis for more complex linking designs with anchor

tests (von Davier et al., 2004, chap. 9), so that results of this report are readily applied to a very

wide variety of linking problems.
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Table 3
Comparison of Conversions From Form 1 to Form 2

K(2) K(3) K(4)
Value Est. EASD Est. EASD Est. EASD

0 0.111 0.077 -0.040 0.113 0.404 0.262
1 1.168 0.128 0.927 0.204 1.404 0.264
2 2.144 0.135 1.917 0.208 2.269 0.221
3 3.091 0.130 2.910 0.182 3.121 0.176
4 4.028 0.120 3.899 0.151 3.987 0.140
5 4.959 0.108 4.881 0.122 4.874 0.117
6 5.889 0.097 5.854 0.101 5.785 0.105
7 6.819 0.086 6.819 0.087 6.721 0.100
8 7.748 0.076 7.775 0.080 7.679 0.095
9 8.677 0.069 8.722 0.078 8.653 0.090

10 9.606 0.065 9.661 0.078 9.634 0.086
11 10.536 0.064 10.591 0.077 10.611 0.085
12 11.465 0.066 11.512 0.077 11.574 0.088
13 12.394 0.073 12.425 0.077 12.514 0.092
14 13.324 0.081 13.331 0.081 13.427 0.094
15 14.256 0.091 14.231 0.090 14.310 0.096
16 15.193 0.102 15.128 0.105 15.166 0.101
17 16.141 0.113 16.033 0.126 16.003 0.116
18 17.119 0.121 16.967 0.149 16.838 0.142
19 18.173 0.123 17.985 0.167 17.716 0.174
20 19.495 0.094 19.304 0.150 18.842 0.198

Note. EASD = estimated asymptotic standard deviation, est. = estimate.
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Table 4
Conversions From Form 1 to Form 2 by Kernel Equating

Value Estimate EASD
0 -0.002 0.162
1 0.999 0.221
2 1.981 0.221
3 2.956 0.193
4 3.926 0.159
5 4.890 0.128
6 5.850 0.104
7 6.805 0.089
8 7.756 0.080
9 8.702 0.078

10 9.643 0.077
11 10.580 0.077
12 11.512 0.077
13 12.439 0.078
14 13.362 0.083
15 14.283 0.095
16 15.206 0.115
17 16.140 0.140
18 17.105 0.167
19 18.155 0.185
20 19.411 0.158

Note. EASD = estimated asymptotic standard deviation, est. = estimate.
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